Cross Product

Definition 1: The cross product of two vectors \underline{a} and \underline{b} is a vector which is orthogonal to both \underline{a} and \underline{b} whose magnitude is given by the area of the parallelogram defined by \underline{a} and \underline{b} and whose direction is given by the right null (cork screw rule) or by comparison with the standard x,y,z axis.

Definition 2 $\underline{a} \times \underline{b} = |a| |b| \sin \vartheta \hat{\underline{n}}$ where θ is the angle between \underline{a} and \underline{b} and $\hat{\underline{n}}$ is a unit magnitude vector orthogonal to \underline{a} and \underline{b} in the sense given by the right hand rule.

Useful Mathematical Relations:

 $\underline{a} \times \underline{b} = -\underline{b} \times \underline{a}$ - cross products anti-commute (think right hand rule)

 $\underline{a} \times (\underline{b} + \underline{c}) = \underline{a} \times \underline{b} + \underline{a} \times \underline{c}$ - cross products are distributive (note the order is still important)

 $(\underline{a} \times \underline{b}) \underline{a} = (\underline{a} \times \underline{b}) \underline{b} = 0$ - which should be obvious

Applications of Cross Product

The force (\underline{F}) on a segment of a wire carrying a current I whose ends are joined by the vector \underline{L} in a uniform magnetic field (\underline{B}) is given by

 $\underline{F} = I \underline{L} \times \underline{B}$ - ordering is important

Magnetic field (<u>B</u>) due to a charge q moving with velocity \underline{v} at point whose position relative to the charge is \underline{r} is given by

$$\underline{B} = \frac{\mu_0}{4\pi} \frac{q\underline{v} \times \underline{r}}{r^2}$$

The angular momentum of a particle (\underline{L}) with momentum \underline{p} and position \underline{r} relative to the position at which the angular momentum is measured is given by

 $\underline{L} = \underline{r} \times p$

The torque $\underline{\tau}$ due to a force \underline{F} applied to a particle at position \underline{r} relative to the position at which the torque is measured is given by

$$\underline{\tau} = \underline{r} \times \underline{F}$$

A plane in space can be defined in many ways. One obvious way is to define one point on the plane \underline{c} and two vectors \underline{a} and \underline{b} , which are not parallel, in the plane. A point is on the plane if the difference between its position \underline{r} and the known point on the plane can be written as a sum of the two vectors in the plane. A much algebraically cleaner method of writing the equation is given by

 $(\underline{r} - \underline{c}) \cdot \underline{n} = 0$ where \underline{n} is normal to the plane i.e. $\underline{n} = \underline{a} \times \underline{b}$

Diagram needed here

Problems

Cross Products

Question 1

A short segment of wire whose ends are joined by the vector $\underline{L} = (1,2,0)$ cm is carrying a current of 1 A in the presence of a uniform magnetic field $\underline{B} = (0,0,2)$ T what is the force due to the magnetic field on the wire?

Question 2

- a) Two particles at positions $\underline{r} = (1,1,0)$ mm and $-\underline{r}$ are acted on by forces $\underline{F} = (1,-1,0)$ N and $-\underline{F}$; what is the total to torque on the two particles measured at the origin?
- b) Two particles at positions $\underline{r} = (1,1,0)$ mm and $-\underline{r}$ are acted on by forces $\underline{F} = (1,-1,0)$ N and \underline{F} ; what is the total to torque on the two particles measured at the origin?

Question 3

Work out the cross product of vectors $\underline{a} = (1,-2,4)$ and $\underline{b} = (-3,-3,2)$ by writing out both vectors as a sum of the unit vectors \underline{i} , \underline{j} and \underline{k} , and using the distributive and commutative rules for cross products.

Question 4

- a) The sides of a parallelogram are defined by the vectors $\underline{a} = (1,2,3)$ and $\underline{b} = (2,1,0)$. Calculate a vector normal to the surface of the parallelogram whose magnitude is equal to the area of the parallelogram.
- b) A wire is formed into the shape of the parallelogram and place in a flow of air whose velocity $\underline{v} = (1,1,1) \text{ ms}^{-1}$. What volume of air passes through the parallelogram in one second? (Note: This part of the question is much harder and will require you to use the dot product).

Written by David Smith, edited by BSL, 2007